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Abstract

Long-wave infrared (LWIR) hyperspectral imaging sensors are widely
used for the detection and identification of released chemical agents in many
civilian and military applications. Current hyperspectral system capabilities
are limited by variation in the background clutter as opposed to the physics
of photon detection. Hence, the development of statistical models for back-
ground clutter and optimum signal processing algorithms that exploit these
models are essential for the design of practical systems that satisfy user’s
requirements. This paper describes a signal processing system for the detec-
tion and identification of released chemical agents developed at MIT Lincoln
Laboratory. We discuss the underlying signal models, key detection and iden-
tification algorithms, and some areas where the signal processing community
could contribute.

1 Introduction

Standoff detection of chemical warfare agents (CWAs) is necessary when physical
separation is required to put people and assets outside the zone of severe damage.
An important class of standoff sensors for CWAs is based on the principles of
passive infrared (IR) spectroscopy. Typical standoff CWA sensors [5, 2] utilize
passive imaging spectroscopy in the LWIR atmospheric window (8-13µm). The
LWIR region is well suited for gas-sensing applications because of the relative
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transparency of the atmosphere at these wavelengths and the presence of unique
identifying spectral signatures for a wide range of chemicals.

In this paper, we describe and demonstrate the operation of a complete auto-
mated system for the detection of chemical clouds using an LWIR imaging spec-
trometer. We start with the description of a physics-based signal model that pro-
vides the basis for the development of the required signal processing algorithms.
Then, we provide a brief description of the signal and clutter models, detection
algorithms, constant false alarm threshold selection, discrimination-identification
algorithms, spatial false alarm mitigation, and experimental results using data sets
collected by a Telops FIRST hyperspectral (FTIR) sensor on an acetic acid explo-
sive release at the Dugway Proving Ground in Utah. Due to space limitations, the
description of the various signal processing algorithms will be concise. More ex-
perimental results demonstrating the performance of the automated system, in the
form of movies, will be shown at the conference presentation.

2 Physics-Based Radiance Signal Model
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Figure 1: Three-layer plume radiance transfer model.

The physical basis for gas detection in LWIR can be explained with the following
simplified model [2] (see Figure 1)

Lon(λ)− Loff(λ) = [1− τp(λ)] τa(λ) [B(λ, Tp)− Lb(λ)] (1)

whereLon(λ) is the radiance reaching the sensor when the plume is present,Loff(λ)
is the radiance reaching the sensor when the plume is absent, τa(λ) is the atmo-
spheric transmission between the chemical cloud and the sensor, Lb(λ) the radi-
ance of the background, B(λ, Tp) is the Planck function evaluated at the plume
temperature, and

τp(λ) = exp [−α(λ)× CL] (2)
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is the plume transmission function as expressed by Beer’s law. We note that
all quantities in (1) and (2) are functions of wavelength λ or equivalently the
wavenumber ν. Natural backgrounds include low-angle sky, mountains, vegeta-
tion, urban environments, etc. All of these backgrounds emit infrared radiation in
the 7-14 µm spectral region.

The function α(λ), which is known as the absorption coefficient spectrum, is
unique for each gaseous chemical and can be used as a spectral fingerprint. The
quantity CL, which is called the concentration pathlength, is the product of two
terms: the term L, which is the length along the sensor boresight that represents
the depth of the cloud, and the term C, which is the average concentration along
that pathlength.

The exponential relationship between the signal of interest α(λ)×CL and the
sensor-measured differential radiance (spectral contrast) Lon(λ) − Loff(λ), makes
the detection and identification of gaseous chemicals a challenging problem. How-
ever, in many practical situation we can make the following assumptions:

• The plume is optically thin, that is, CL � 1. In this case, we can use the
following linear approximation of Beer’s law: τp(λ) ≈ 1− α(λ)× CL.

• The emissivity of the background in the vicinity of significant gas absorption
features is a smooth curve. Then, we can use the approximation Lb(λ) ≈
B(λ, Tb).

• We can use a local linear approximation of Planck’s function about the plume
temperature (valid for |Tp − Tb| less than 30 degrees C).

Under these conditions, we can show that [2]

Lon(λ) ≈ (const× CL×∆T )τa(λ)α(λ) + Loff(λ) (3)

which provides the basis for the development of the detection and identification
algorithms used in this paper.

3 Target and Clutter Modeling

Equation (3) is a linear relationship, which can be expressed in vector form by
sampling at K wavelengths λ1, λ2, . . . , λK , determined by the characteristics of
the sensor. The results is the following linear signal model

x = as+ v (4)

where
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x , [Lon(λ1) . . . Lon(λK)]T

a , const× CL×∆T

s , [τa(λ1)α(λ1) . . . τa(λK)α(λK)]T

v , [Loff(λ1) . . . Loff(λK)]T

The spectral signature s is determined using measurements of α(λk) from high
resolution spectral libraries and predicted values of τa(λk) obtained using the at-
mospheric transmission code MODTRAN.

The background clutter is modeled using a multivariatet-elliptically contoured
distribution with density function

f(x) =
Γ
(
K+ν

2

)
(πν)

K
2 Γ
(
ν
2

)√
|R|

[
1 +

1
ν

(x− µ)TR−1(x− µ)
]−K+ν

2

(5)

where Γ( ) is the Gamma function. The number of degrees of freedom ν controls
the tails of the distribution: ν = 1 leads to the multivariate Cauchy distribution
(heavier tails), whereas as ν → ∞ the t-distribution approaches the multivariate
normal distribution (lighter tails). The mean and covariance of x are given by
E(x) = µ and Cov(x) = ν

ν−2R, ν ≥ 3, respectively. The quadratic form in (9) is
distributed as an F-distribution

δ2 =
1
ν

(x− µ)TR−1(x− µ) ∼ FK,ν (6)

with K and ν degrees of freedom. The value of ν controls the thickness of the dis-
tribution’s tails. The estimation of these models from real data, which is illustrated
in Figure 2, is discussed in [3].

4 Detection Algorithms

The signal model (4) describes how the presence of plume changes the radiance v
of a background pixel. This change, which is known as radiance contrast, can be
exploited to detect the presence of a CWA using statistical detection techniques.
We have found out that the matched filter detector

yMF =
sT Σ̂−1

b (x− µb)
sT Σ̂−1

b s
(7)

and the adaptive cosine/coherence estimator (ACE)

yACE =
[sT Σ̂−1

b (x− µb)]2

(sT Σ̂−1
b s)[(x− µb)T Σ̂

−1
b (x− µb)]

(8)
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Figure 2: Modeling thermal hyperspectral backgrounds with a t-ECD relies on
estimating the heavy-tail parameter by fitting a mixture of two F-distributions into
the Mahalanobis distance.

provide good performance by exploiting statistical distance and angle separation
in the spectral space. The quantities µb and Σb are maximum likelihood estimates
obtained from plume-free background clutter. More details about the application
of these algorithms to hyperspectral target detection and plume detection problems
can be found in [3].

5 Constant False Alarm Rate Processor

The tails of the plume-free background distribution at the output of the matched
filter or ACE detectors can be modeled with sufficient accuracy using the general-
ized Pareto distribution (GPD) [4]. Given a sufficiently high “tail-threshold” u, the
distribution Fu(z) = Pr(X − u ≤ z|X > u) of excess values z = x− u of x over
u, converges to the GPD

G(z) =

{
1−

(
1 + ξ zσ

)−1/ξ
, ξ 6= 0

1− exp(−z/σ), ξ = 0
(9)

which is defined for z > 0 and 1 + ξz/σ > 0. The quantities σ > 0 and ξ are
known as scale and shape parameters, respectively. The GPD has heavy tails for
ξ > 0, exponential tails for ξ = 0, and a finite upper endpoint at −σ/ξ for ξ < 0.
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Figure 3: Illustration of GPD-based CFAR threshold selection.

The parameters of this model are estimated from the data using the method of
maximum likelihood. The GPD fitted to the data can be used to approximate the
tail of the unknown underlying distribution. If we denote by η̂ the estimate of the
threshold corresponding to a false alarm probability PFA, we have

η̂ = u+
σ̂

ξ̂

[(
α

PFA

)ξ̂
− 1

]
(10)

where u is the threshold used to estimate the parameters of the GPD and α is the
fraction of samples above this threshold.

6 Discrimination and Identification Algorithms

The task of assigning a hit to one of a predetermined number of CWA classes is
known as discrimination. When each class consists of a single CWA agent, dis-
crimination is known as identification. The theoretical framework for detection
and discrimination is the theory of statistical hypothesis testing. Therefore, de-
tection and discrimination have some formal similarities; however, they also have
some important differences.

A criterion for discrimination performance should take into consideration the
importance of different CWA threats. If all threats are symmetrically treated, a
meaningful figure of merit is the probability of correct discrimination (PCD) de-
fined by PCD =

∑p
k=1 Pr(D = sk|T = sk). Using the signal model (3), the dis-
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crimination problem can be stated as testing between the following p hypotheses
(k = 1, . . . , p)

Hk : x = aksk + v ∼ NK(aksk + µb,Σb) (11)

If {ak, sk,µb,Σb} are known, the PCD is minimized by the maximum likelihood
classifier. This classifier computes the Mahalanobis distances of the pixel under
test x from each aksk

∆2
k = (x− µb − aksk)TΣ−1

b (x− µb − aksk) (12)

and assigns x to the “closest” (according to ∆k) CWA. In practice, ak, µb, and
Σb have to be estimated from the available data. The generalized least-squares
estimate of ak is given by

âk =
sTi Σ̂

−1
b (x− µ̂b)
sTi Σ̂

−1
b µ̂b

(13)

Substitution into (12) provides a practical discrimination algorithm. Another ap-
proach is to use the F-test developed in linear regression analysis [1].

7 Spatial Distribution of False Alarms

Figure 4 shows an example of the spatial point pattern generated by the top one
percent hits at output of the matched filter for a plume-free cube and its proba-
bility distribution. It turns out that this spatial pattern follows a complete spatial
randomness (CSR) model. This result and the fact that plume pixels appear in
spatial clusters allows the use binary integration, “M of N” detection, or coinci-
dence detection to improve detection performance. Binary detection is used in the
automated system as part of the false alarm mitigation process.

8 Automated CWA Detection System

Figure 5 shows the basic components of the automated CWA detection/identification
system. This system has been implemented in the form of a flexible MATLAB pro-
cessing pipeline which allows quick experimentation with different algorithms and
data sets.

To illustrate the operation of the system we use data collected by a Telops FT-
IR FIRST hyperspectral sensor on an acetic acid explosive release at the Dugway
Proving Ground in Utah. The specific LWIR data set used was taken on August
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Figure 4: Extreme values of the matched filter detection statistics and the modeling
of their spatial distribution with the complete spatial randomness (CSR) model.

3rd, 2006 at approximately 11:30am in the morning. The Field-of-View (FOV)
of the sensor was 150 x 320 pixels, with 104 spectral bands from 8-11µm and an
instantaneous FOV of 0.342 mrad. The ambient temperature at the time of the re-
lease was 29.68 degrees Celsius (302.85K), and the ambient relative humidity was
26%. In total, 43 hyperspectral cubes were captured over a span of 3.35 minutes,
22 of which were captured pre-release. There are approximately 4-5 seconds be-
tween cubes. The data used has a mountainous background scene consisting of
three distinct regions: sky, mountain, and field. As an illustration, Figure 6 shows
the output of the matched filter for a cube with an acetic acid plume present. Red
(blue) indicates plume warmer (colder) than the background. Movies demonstrat-
ing the operation and performance of the system with various data sets will shown
at the conference presentation.

9 Summary

The objective of the work reported in this paper is to develop real-time capability to
detect, identify, quantify, and track the presence of chemical warfare agent threats
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Figure 5: Automated signal processing system for hyperspectral chemical plume
detection and identification.

Figure 6: Example of matched filter output detection statistics.

at physiologically significant levels. We have developed and implemented in MAT-
LAB a fully automated system for detection and identification of chemical plumes.
The performance of the system has been evaluated with data collected by the US
Army, Edgewood Chemical and Biological Center, for various types of chemical
agents and backgrounds.
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